Application of the neural network approach to constructing a modern educational process in higher education
Abstract
The aim of this research is to theoretically substantiate the possibility of applying a neural network approach to constructing a modern educational process in higher education. The article examines the main machine learning methods used for analyzing educational data and justifies the necessity of their implementation into the educational process. Particular attention is paid to the interpretability of artificial neural network (ANN) models and their influence on decision-making in educational institutions. The scientific novelty lies in substantiating the essence of the neural network approach and its principles as a theoretical basis for the development and justification of models for organizing various stages of the educational process in higher education using ANNs. The results of the research include a description of the application of the neural network approach to: organizing adaptive learning; evaluating students' current achievements and providing feedback to the instructor; predicting learning success; and constructing individual educational trajectories. The conclusion is drawn regarding the possibility of the practical application of the developed models for organizing various stages of the educational process in higher education, aimed at increasing the adaptability, personalization, and effectiveness of learning.
References
- Абрамова С. В., Бояров Е. Н. Системно-структурный подход к построению содержания образования в области безопасности жизнедеятельности // Фундаментальные проблемы образования в области безопасности жизнедеятельности: материалы научно-практической конференции (г. Санкт-Петербург, 12-13 ноября 2019 г.). СПб.: Бук, 2019.
- Бояров Е. Н. Применение адаптивного подхода в подготовке современного педагога в области безопасности жизнедеятельности // Вестник Череповецкого государственного университета. 2015. № 8 (69).
- Васильева Е. Е., Курушин Д. С., Власов С. С. Раннее прогнозирование среднего балла диплома студентов университета: нейросетевой подход // Международная конференция по мягким вычислениям и измерениям. 2019. Т. 1.
- Гриценко Е. М., Осавелюк П. А. Метод нейросетевого моделирования построения индивидуальных траекторий обучения // Вестник Приамурского государственного университета им. Шолом-Алейхема. 2013. № 1 (12).
- Добровольская Н. Ю. Нейросетевые технологии при организации обучения бакалавров прикладной математики // Актуальные проблемы обучения математике в школе и вузе: от науки к практике. К 80-летию со дня рождения В. А. Гусева: материалы VII Международной научно-практической конференции (г. Москва, 18-19 ноября 2022 г.). М.: Московский педагогический государственный университет, 2022.
- Зайцева Т. В., Игрунова С. В., Путивцева Н. П., Пусная О. П., Нестерова Е. В. Модель оценивания профессиональных компетенций на базе нейросетевого подхода // Информационные технологии в науке и производстве: материалы IV Всероссийской молодежной научно-технической конференции (г. Омск, 08-09 февраля 2017 г.). Омск: Омский государственный технический университет, 2017.
- Agarwal B., Mittal N. Text Classification Using Machine Learning Methods-A Survey // Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012) (December 28-30, 2012). Advances in IS and Computing. 2014. Vol. 236. https://doi.org/10.1007/978-81-322-1602-5_75
- Amazona M. V., Hernandez A. A. Modelling student performance using data mining techniques // Proceedings of the 2019 5th International Conference on Computing and Data Engineering. ICCDE’19. N. Y.: Association for Computing Machinery; 2019. https://doi.org/10.1145/3330530.3330544
- Blanco J., Lovelle S., Fernandez R., Perez E. Predicción de resultados académicos de estudiantes de informática mediante el uso de redes neuronales // Ingeniare. Revista chilena de ingeniería. 2016. Vol. 24 (4). https://doi.org/10.4067/S0718-33052016000400015
- Daud A., Aljohani N. R., Abbasi R. A., Lytras M. D., Abbas F., Alowibdi J. S. Predicting student performance using advanced learning analytics // Proceedings of the 26th International Conference on World Wide Web Companion. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, 2017. https://doi.org/10.1145/3041021.3054164
- Devasia T., Vinushree T. P., Hegde V. Prediction of students’ performance using educational data mining // 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE). Ernakulam: IEEE, 2016. https://doi.org/10.1109/SAPIENCE.2016.7684167
- Devlin J., Chang M. W., Lee K., Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding // NAACL-HLT. Minneapolis, 2019.
- Jayaprakash S., Krishnan S., Jaiganesh V. Predicting students academic performance using an improved random Forest classifier // 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). Pune: IEEE, 2020. https://doi.org/10.1109/ESCI48226.2020.9167547
- Kadhim A. I. Survey on supervised machine learning techniques for automatic text classification // Artif Intell. 2019. Vol. 52. https://doi.org/10.1007/s10462-018-09677-1
- Kangoo N. A., Roy A. Supervised Machine Learning Text Classification: A Review // Proceedings of International Conference on Paradigms of Communication, Computing and Data Analytics. PCCDA 2023. Algorithms for IS / ed. by A. Yadav, S. J. Nanda, M. H. Lim. Singapore: Springer Nature Singapore, 2023. https://doi.org/10.1007/978-981-99-4626-6_53
- Kumar V. U., Krishna A., Neelakanteswara P., Basha C. Z. Advanced prediction of performance of a student in an university using machine learning techniques // 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). Coimbatore: IEEE, 2020. https://doi.org/10.1109/ICESC48915.2020.9155557
- Páez A., Guzmán D. Diseño de un modelo para automatizar la predicción del rendimiento académico en estudiantes del IPN // Revista Iberoamericana para la Investigación y el Desarrollo Educativo. 2018. № 8 (16). https://doi.org/10.23913/ride.v8i16.340
- Prasad A., Kaur M., Kan M.-Y. Neural ParsCit: a deep learning-based reference string parser // International Journal on Digital Libraries. 2018. № 19. https://doi.org/10.1007/s00799-018-0242-1
- Rincon-Flores E. G., López-Camacho E., Mena J., López O. O. Predicting academic performance with artificial intelligence (AI), a new tool for teachers and students // 2020 IEEE Global Engineering Education Conference (EDUCON). Porto: IEEE, 2020. https://doi.org/10.1109/EDUCON45650.2020.9125141
- Roy A., Ghosh D. Pattern Recognition based Tasks and Achievements on Handwritten Bengali Character Recognition // 6th International Conference on Inventive Computation Technologies (ICICT). Coimbatore: IEEE, 2021. https://doi.org/10.1109/ICICT50816.2021.9358783
- Widyaningsih Y., Fitriani N., Sarwinda D. A semi-supervised learning approach for predicting Student’s performance: first-year students case study // 12th International Conference on Information & Communication Technology and System (ICTS). Surabaya: IEEE, 2019. https://doi.org/10.1109/ICTS.2019.8850950
- Wu J., Rohatgi Sh., Keesara S. R. R., Chhay J., Kuo K., Menon A. M., Parsons S., Urgaonkar B., Lee Giles C. Building an Accessible, Usable, Scalable, and Sustainable Service for Scholarly Big Data // 2021 IEEE International Conference on Big Data (Big Data). Orlando: IEEE, 2021. https://doi.org/10.1109/BigData52589.2021.9671612
- Zhang L., Sun B., Shu F., Huang Y.Comparing paper level classifications across different methods and systems: an investigation of Nature publications // Scientometrics. 2022. Vol. 127. https://doi.org/10.1007/s11192-022-04352-3
Author information
About this article
Publication history
- Received: March 6, 2025.
- Published: May 16, 2025.
Keywords
- нейросетевые технологии
- прогнозирование успеваемости
- адаптивное обучение
- машинное обучение
- нейросетевой подход
- neural network technologies
- performance prediction
- adaptive learning
- machine learning
- neural network approach
Copyright
© 2025 The Author(s)
© 2025 Gramota Publishing, LLC