Направления исследований в области анализа образовательных данных в высшей школе: теоретический обзор
Аннотация
Данная публикация представляет собой обзор зарубежной англоязычной научно-педагогической литературы, цель которого – выявить актуальные направления исследований в области анализа образовательных данных в современной высшей школе. В обзоре рассмотрены факторы, обусловившие развитие анализа образовательных данных (далее – АОД) и аналитики обучения (далее – АО) в контексте процессов цифровой трансформации современного общества. Разбираются потенциал, проблемы и направления применения АОД и АО в высшем образовании в целом, а также в сфере анализа успеваемости и поведения обучающихся, усовершенствования образовательных программ, повышения эффективности системы высшего образования. Научная новизна обзора заключается в определении наиболее актуальных задач исследований АОД и выявлении перспективных направлений исследований в данной области всех субъектов образовательного процесса в высшей школе. В результате проанализированы работы 2017-2023 гг. по рассматриваемой тематике, описаны проблемы применения АОД, связанные с вопросами этики и конфиденциальности личных данных; актуальные методы АОД; опыт внедрения АОД в высшей школе.
Источники
- Ahmad Z., Shahzadi E. Prediction of Students’ Academic Performance Using Artificial Neural Network // Bulletin of Education. 2018. Vol. 40. Iss. 3.
- Ahuja R., Jha A., Maurya R., Srivastava R. Analysis of Educational Data Mining // Advances in Intelligent Systems and Computing. 2018. Vol. 741.
- Aleem A., Gore M. M. Educational Data Mining Methods: A Survey // 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT) (Gwailor, India, 2020). 2020. DOI: 10.1109/CSNT48778.2020.9115734
- Alyahyan E., Düştegör D. Predicting Academic Success in Higher Education: Literature Review and Best Practices // International Journal of Educational Technology in Higher Education. 2020. Vol. 17. Iss. 3.
- Ang L., Ge F., Seng K. Big Educational Data & Analytics: Survey, Architecture and Challenges // IEEE Access. 2020. Vol. 8.
- Attaran M., Stark J., Stottler D. Opportunities and Challenges for Big Data Analytics in American Higher Education – A Conceptual Model for Implementation // Industry and Higher Education. 2018. Vol. 32. Iss. 3.
- Azcona D., Hsiao I.-H., Smeaton A. F. Detecting Students-at-Risk in Computer Programming Classes with Learning Analytics from Students’ Digital Footprints // User Modeling and User-Adapted Interaction. 2019. Vol. 29. Iss. 2.
- Baker R. S., Corbett A. T., Koedinger K. R. Detecting Student Misuse of Intelligent Tutoring Systems // Proceedings of the 7th International Conference on Intelligent Tutoring Systems (Maceio, Alagoas, Brazil, August 30 – September 3, 2004). 2004. DOI: 10.1007/978-3-540-30139-4_50
- Baker R. S., Inventado P. S. Educational Data Mining and Learning Analytics // Learning Analytics / ed. by J. Larusson, B. White. N. Y., 2014.
- Bakhshinategh B., Zaiane O. R., ElAtia S., Ipperciel D. Educational Data Mining Applications and Tasks: A Survey of the Last 10 Years // Education and Information Technologies. 2018. Vol. 23. Iss. 1.
- Beck J., Woolf B. High-Level Student Modeling with Machine Learning // Proceedings of the 5th International Conference of Intelligent Tutoring Systems (Germany, Berlin, June 19-23, 2000). 2000. DOI: 10.1007/3-540-45108-0_62
- Brown M., DeMonbrun R. M., Teasley S. Taken Together: Conceptualizing Students’ Concurrent Course Enrollment Across the Post-Secondary Curriculum Using Temporal Analytics // Journal of Learning Analytics. 2018. Vol. 5. Iss. 3.
- Daniel B. K. Big Data and Data Science: A Critical Review of Issues for Educational Research // British Journal of Educational Technology. 2019. Vol. 50. Iss. 1.
- Dawson S., Poquet O., Colvin C., Rogers T., Pardo A., Gasevic D. Rethinking Learning Analytics Adoption through Complexity Leadership Theory // LAK’18 Proceedings of the 8th International Conference on Learning Analytics and Knowledge (Australia, Sydney, March, 2018). 2018. DOI: 10.1145/3170358.3170375
- Dhankhar A., Solanki K. State of the Art of Learning Analytics in Higher Education // International Journal of Emerging Trends in Engineering Research. 2020. Vol. 8. Iss. 3.
- Dimić G., Predić B., Rančić D., Petrović V., Maček N., Spalević P. Association Analysis of Moodle E-Tests in Blended Learning Educational Environment // Computer Applications in Engineering Education. 2017. Vol. 26. Iss. 3.
- Gottipati S., Shankararaman V. Competency Analytics Tool: Analyzing Curriculum Using Course Competencies // Education and Information Technologies. 2018. Vol. 23. Iss. 10.
- Guan X., Feng X., Islam A. The Dilemma and Countermeasures of Educational Data Ethics in the Age of Intelligence // Humanities and Social Sciences Communications. 2023. Vol. 10.
- Handbook of Learning Analytics / ed. by C. Lang, G. Siemens, A. Wise, D. Gašević. 1st ed. Society for Learning Analytics Research (soLAR), 2017. DOI: 10.18608/hla17
- Heileman G. L., Slim A., Hickman M., Abdallah C. T. Characterizing the Complexity of Curricular Patterns in Engineering Programs // ASEE Annual Conference & Exposition (Columbus, Ohio, June 24-28, 2017). 2017. DOI: 10.18260/1-2--28029
- Hernández de Menéndez M., Morales-Menendez R., Escobar C., Ramirez-Mendoza R. Learning Analytics: State of the Art // International Journal on Interactive Design and Manufacturing (IJIDeM). 2022. Vol. 16. Iss. 2.
- Hilliger I., Aguirre C., Miranda C., Celis S., Pérez-Sanagustín M. Lessons Learned from Designing a Curriculum Analytics Tool for Improving Student Learning and Program Quality // Journal of Computing in Higher Education. 2022. Vol. 34.
- Hilliger I., Aguirre C., Miranda C., Celis S., Pérez-Sanagustín M. Design of a Curriculum Analytics Tool to Support Continuous Improvement Processes in Higher Education // LAK’20: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (Frankfurt, Germany, March 23-27, 2020). 2020. DOI: 10.1145/3375462.3375489
- Hoel T., Chen W. Privacy and Data Protection in Learning Analytics Should Be Motivated by an Educational Maxim – towards a Proposal // Research and Practice in Technology Enhanced Learning. 2018. Vol. 13. Iss. 20.
- Hooda M., Rana C. Learning Analytics Lens: Improving Quality of Higher Education // International Journal of Emerging Trends in Engineering Research. 2020. Vol. 8. Iss. 5.
- Ifenthalter D., Yau J. Reflections on Different Learning Analytics Indicators for Supporting Study Success // International Journal of Learning Analytics and Artificial Intelligence for Education. 2020. Vol. 2. Iss. 2.
- Juhaňák L., Zounek J., Rohlíková L. Using Process Mining to Analyze Students’ Quiz-Taking Behavior Patterns in a Learning Management System // Computers in Human Behavior. 2019. Vol. 92.
- Kitto K., Sarathy N., Gromov A., Liu M., Musial K., Shum S. B. Towards Skills-Based Curriculum Analytics: Can We Automate the Recognition of Prior Learning? // LAK’20: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (Frankfurt, Germany, March 23-27, 2020). 2020. DOI: 10.1145/3375462.3375526
- Kousa P., Niemi H. AI Ethics and Learning: EdTech Companies’ Challenges and Solutions // Interactive Learning Environments. March 1, 2022. DOI: 10.1080/10494820.2022.2043908
- Kularski C. M., Martin F. Online Student Privacy in Higher Education: A Systematic Review of the Research // American Journal of Distance Education. 2021. Vol. 36. Iss. 3.
- Li Y., Chen X., Sun D., Zhu Y., Zhai X. From “Transparent People” to “Practitioner”: Challenges and Responses to Information Security in Higher Education: Implications from 2021 EDUCAUSE Horizon Report // Journal of Distance Education. 2021. Vol. 3.
- Magdy A., Dony C. 1st ACM SIGSPATIAL Workshop on Geo Computational Thinking in Education. 2019. URL: https://www.sigspatial.org/wp-content/uploads/special-issues/11/3/Report02_GeoEd.pdf
- Mandinach E., Jimerson J. Data Ethics in Education: A Theoretical, Practical, and Policy Issue // Studia Paedagogica. 2021. Vol. 26. Iss. 4.
- Merceron A., Yacef K. A Web-Based Tutoring Tool with Mining Facilities to Improve Learning and Teaching // 11th International Conference on Artificial Intelligence in Education / ed. by F. Verdejo and U. Hoppe. Sydney: IOS Press, 2003.
- Moscoso-Zea O., Sampedro A. P., Luján-Mora S. Datawarehouse Design for Educational Data Mining // 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET) (Turkey, Istanbul, 8-10 September, 2016). 2016. DOI: 10.1109/ITHET.2016.7760754
- Musso M. F., Hernández C. F. R., Cascallar E. C. Predicting Key Educational Outcomes in Academic Trajectories: A Machine-Learning Approach // Higher Education. 2020. Vol. 80.
- Namoun A., Alshanqiti A. Predicting Student Performance Using Data Mining and Learning Analytics Techniques: A Systematic Literature Review // Applied Sciences. 2021. Vol. 11. Iss. 1.
- Romero C., Ventura S. Data Mining in Education // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2013. Vol. 3. Iss. 1.
- Romero C., Ventura S. Educational Data Mining: A Review of the State of the Art // IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2010. Vol. 40. Iss. 10.
- Romero C., Ventura S. Educational Data Mining: A Survey from 1995 to 2005 // Expert Systems with Applications. 2007. Vol. 33. Iss. 1.
- Romero C., Ventura S. Educational Data Mining and Learning Analytics: An Updated Survey // WIREs Data Mining and Knowledge Discovery. 2020. Vol. 10. Iss. 3.
- Rosé C. P., McLaughlin E. A., Liu R., Koedinger K. R. Explanatory Learner Models: Why Machine Learning (Alone) Is Not the Answer // British Journal of Educational Technology. 2019. Vol. 50. Iss. 6.
- Sekli M., De la Vega I. Adoption of Big Data Analytics and Its Impact on Organizational Performance in Higher Education Mediated by Knowledge Management // Journal of Open Innovation: Technology, Market and Complexity. 2021. Vol. 7. Iss. 4.
- Shorfuzzaman M., Hossain M. S., Nazir A., Muhammad G., Alamri A. Harnessing the Power of Big Data Analytics in the Cloud to Support Learning Analytics in Mobile Learning Environment // Computers in Human Behaviour. 2019. Vol. 92.
- Siemens G. Learning Analytics: The Emergence of a Discipline // American Behavioral Scientist. 2013. Vol. 57. Iss. 10.
- Solem M., Dony C., Herman T., Leon K., Magdy A., Nara A., Ray W., Rey S., Russel R. Building Educational Capacity for Inclusive Geocomputation: A Research-Practice Partnership in Southern California // Journal of Geography. 2021. Vol. 120. Iss. 4.
- Sonderlund A., Hughes E., Smith J. R. The Efficacy of Learning Analytics Interventions in Higher Education – a Systematic Review // British Journal of Educational Technology. 2018. Vol. 50.
- Tang H., Zhang J. Limits of Big Data Application in Education // Journal of East China Normal University (Educational Sciences). 2020. Vol. 38. Iss. 10.
- Tang T., McCalla G. Smart Recommendation for an Evolving E-Learning System: Architecture and Experiment // International Journal on E-Learning. 2005. Vol. 4. Iss. 1.
- Tasmin R., Muhammad N. R., Aziati A. Big Data Analytics Applicability in Higher Learning Educational System // IOP Conference Series: Materials Science and Engineering (Kota Bharu, Kelantan, 2020). 2020. DOI: 10.1088/1757-899X/917/1/012064
- Tsai Y., Rates D., Moreno-Marcos P., Merino P., Jivet I., Scheffel M., Drachsler H., Delago-Kloos C., Gasevic D. Learning Analytics in European Higher Education – Trends and Barriers // Computers & Education. 2020. Vol. 155.
- Vieira C., Parsons P., Byrd V. Visual Learning Analytics of Educational Data: A Systematic Literature Review and Research Agenda // Computers & Education. 2018. Vol. 122.
- Waheed H., Hassan S. U., Aljohani N. R., Hardman J., Alelyani S., Nawaz R. Predicting Academic Performance of Students from VLE Big Data Using Deep Learning Models // Computers in Human Behavior. 2020. Vol. 104.
- West D., Luzeckyj A., Toohey D., Vanderlelie J., Searle B. Do Academics and University Administrators Really Know Better? The Ethics of Positioning Student Perspectives in Learning Analytics // Australasian Journal of Educational Technology. 2020. Vol. 36. Iss. 2.
- Zaïane O. Web Usage Mining for a Better Web-Based Learning Environment. 2001. URL: https://webdocs.cs.ualberta.ca/~zaiane/postscript/CATE2001.pdf
- Zeng Z., Li Y., Cao Y., Zhao Y., Zhong J., Sidorov D., Zeng X. Blockchain Technology for Information Security of the Energy Internet: Fundamentals, Features, Strategy and Application // Energies. 2020. Vol. 13. Iss. 4.
- Zhang L., Li K. F. Education Analytics: Challenges and Approaches // 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA) (Krakow, Poland, 2018). 2018. DOI: 10.1109/WAINA.2018.00086
Информация об авторах
Информация о статье
История публикации
- Поступила в редакцию: 12 мая 2023.
- Опубликована: 13 июля 2023.
Ключевые слова
- анализ образовательных данных
- аналитика обучения
- высшее образование
- анализ успеваемости и поведения обучающихся
- субъекты образовательного процесса
- этика и конфиденциальность личных данных
- educational data mining
- learning analytics
- higher education
- analytics in the field of academic performance and students’ behavior
- actors of educational process
- personal data ethics and privacy
Copyright
© 2023 Автор(ы)
© 2023 ООО Издательство «Грамота»